Max	E(s)	$f(x) = x = \frac{x}{x}$ when $x \ge 0$
His continuous, differential value are equal to $x = 0$		
$f' = \begin{cases} 1 & \text{when } x > q_{cr} \\ -1 & \text{when } x \le b_{cr} \end{cases}$		
$x \le 0$	$x \le 0$	
$x \le 0$	$x \ge 0$	
$x \le 0$	$x \ge 0$	
$x \le 0$	$x \ge 0$	
$f(x)$	$f'(x)$	
$f'(x)$	$f'(x)$	
$f'(x)$	$f'(x)$	
$f'(x)$	$f'(x)$	

f has an absolute maximum at $x = 1$. the maximal value of f is 1. $f(x) \leq f(1) = 1$ f does not have an absolute minimum $\begin{bmatrix} a & b & s \\ b & c & d \end{bmatrix}$ $if f(c) \leq f(x) \forall x \)$ such c does not exist b/c ^o is not in the domain of f fgo can be arbitrarily close to 0 but can never be U ^o is the longest possible value ^y s,t . $f(x) \geq 0$ $\forall x \in C_0$ but $f(x) \neq 0$ for any $x \in (0,1]$

 E_{1} $f(x) = x^{2} + 1$ $f' = 2x = 0$ when $x = 0$ $Cgamma$ itical pt< of $f: x = 0$

$$
f can have a local expression\n
$$
f(x) = f(x)
$$
\n
$$
f(x) = x^3
$$
\n
$$
f(x) = x^2
$$
\n
$$
f(x) = x^2
$$
\n
$$
f(x) = x^2
$$
\n
$$
f(x) = x^3
$$
\n
$$
f(x) = x^2
$$
\n
$$
f(x) = x^2
$$
\n
$$
f(x) = x^2
$$
\n
$$
f(x) = x^3
$$
\n
$$
f(x) = x^2
$$
\n $$
$$

 \int \int \int \int A not a local extremum. b/c $f' > 0$ both when $x > 0$
and when $x < 0$

Chapter 6: Application of Derivatives I H_{α} \uparrow \sim 0 \uparrow *i* \in styictly 6-8 when $x < -1$ then $f' > 0$. f' is strictly 6-8 increasing $\sqrt{2}$ $\sqrt{2}$

Procedure to determine intervals of increase/decrease of *f*

- Figure $\bigcap_{k \in \mathbb{N}} \bigcap_{k=0}^{\infty} c_k$ of $\bigcap_{k=0}^{\infty} c_k$ or $f'(c)$ is undefined. Divide the line into several intervals.
- 2. For each intervals (*a, b*) obtained in the previous step.
	- (a) If $f'(x) > 0$, $f(x)$ is a strictly increasing function (\uparrow) on (a, b) .
	- (b) If $f'(x) < 0$, $f(x)$ is a decreasing function (\downarrow) on (a, b) .

Example 6.2.2. Find the intervals in which the function

$$
f(x) = 2x^3 + 3x^2 - 12x - 7
$$

reasing.

is strictly increasing/strictly decreasing.

Solution.

$$
f'(x) = 6x^{2} + 6x - 12 = 6(x+2)(x-1) = 0 \Rightarrow x = -2, 1.
$$

we 3 intervals: $(-\infty, -2), (-2, 1), (1, \infty).$

 $16258 - 2)$

So we hay

Figure 6.1: $y = 2x^3 + 3x^2 - 12x - 7$

Remark. The notion of critical points applies to more general functions, e.g. real functions of several variables, complex functions etc. A critical point always lies in the domain of the function. In the special case of real-valued functions of a single real variable, a critical point is a real number; therefore it is also called a *critical number*. Let $f(x)$ be a real-valued function of a single real variable, and $c \in \mathbb{R}$ be a critical point of f . Let $C \subset \mathbb{R}^2$ be the graph

⌅

of *f* in the $x - y$ plane. The point $(c, f(c)) \in C$ is a critical point of the function $\pi_y : C \to \mathbb{R}$ given by $(x, y) \mapsto y$.

Example 6.2.3. $f(x) = |x|$. We have proved $\sqrt{2}$ Find the intervalsof models decrease We have proved $f(x) = |x|$. ≥ 1 $\sim \infty$ when $\leq \infty$

$$
f'(x) = \begin{cases} -1, & x < 0, \\ \text{does not exist}, & x = 0, \\ 1, & x > 0. \end{cases} \quad \text{Cvibical pt of } \mathcal{C}
$$

 \Rightarrow critical number: $x = 0$; corresponding critical value: 0

Example 6.2.4. $f(x) = x^4 - 4x^3$. Find all critical points and increasing & decreasing intervals. $\left\langle \left\langle \right\rangle \right\rangle$

Solution.

 \geq

$$
f'(x) = 4x^3 - 12x^2 = 4x^2(x-3) = 0 \Rightarrow x = 0,3.
$$

Definition 6.2.3. Let *f*(*x*) be a real-valued function with domain *I*. We say

1. *f*(*x*) has a **relative maximum** (or **local maximum**) at $x = c$ if $f(c) \ge f(x)$ for all $x \in I$ near c . f has a relative (local) minimum at $xz = f$ $f(c) \le f(x)$ γ $\alpha \in I$ where I an open interval containing c 2. $f(x)$ has a **global maximum** (or **absolute maximum**) at $x = c$ if $f(c) \ge f(x)$ for all $x \in I$.

p

Remark. There is some confusion in the literature regarding whether a (local or global) maximum/minimum of a function refers to an element in the domain or its corresponding value (in the range). For most literature, *the* (absolute) maximum of a real function $f(x)$ refers to the value: $M \in \mathbb{R}$ *is said to be the (absolute) maximum if there exists an element* c *in the domain D* of *f* such that $f(x) \leq f(c) \forall x \in D$. To be clear, say that *M* is an (absolute) maximum *value* of *f*; and *f attains* its (absolute) maximum *at c*. Say e.g. *f* has local maxima *at* $x_1, x_2, \ldots \in D$, with corresponding values $f(x_1), f(x_2), \ldots$ Similarly for the notions of (absolute/local) minimum.

Remark. Absolute maxima/minima may not exist. Consider the e.g. the function $f : (0,1] \rightarrow$ R given by $f(x) = x$. This f has an absolute maximum but has no absolute minimum. A general notion is *supremum/infimum*. In the above example, the supremum of *f* is 1 and its infimum is 0.

Question I: How to find relative extrema?

Theorem 6.2.2 (First Derivative Test: Relative Extrema)**.**

Let $f(x)$ *be a continuous function which is differentiable where* $x \neq c$ *. Then*

1. $f(x)$ attains a relative maximum at $x = c$ if near the point c ,

 $f'(x) > 0$ *for* $x < c$; $f'(x) < 0$ *for* $x > c$.

f has
an absolu

maxat

(m Ax value

 ol f is

I

 $x = 1$

2. f(*x*) *attains a relative* minimum *at* $x = c$ *if near the point c*,

$$
f'(x) < 0 \quad \text{for } x < c; \quad f'(x) > 0 \quad \text{for } x > c.
$$

3. $f(x)$ *attains no relative extremum at* $x = c$ *if near the point* c $f^{\prime}(x)$ *has the same sign on two sides of c.*

Theorem 6.2.3. Let $c \in (a, b)$ and let f be a continuous function on (a, b) such that f' exists *and is continuous on* $(a, b) \setminus \{c\}$ *. Then f attains a relative extremum at* $x = c \Rightarrow c$ *is a critical number, i.e.* $f'(c) = 0$ *or* $f'(c)$ *does not exist.*

Remark. f attains a relative extremum at $x = c \Leftrightarrow c$ is a critical number. For example, $f(x) = x^3, f'(x) = 3x^2$, so $x = 0$ is a critical number. But $f'(x) > 0$ on two sides of $x = 0$, so f does not have a relative extremum at 0.

Example 6.2.5. Let

$$
f(x) = 2x^3 + 3x^2 - 12x - 7.
$$

Find all its relative maxima and relative minima.

Solution. Refer to the answer of Example 6.2.2, $f'(x) = 6x^2 + 6x - 12$. The critical numbers are solutions of $f'(x) = 0$, i.e $x = -2$ and $x = 1$.

(point where a relative maximum occurs, corresponding value): $(-2, f(-2)) = (-2, 13)$
(point where a relative minimum occurs, corresponding value): $(1, f(1)) = (1, 14)$ (point where a relative minimum occurs, corresponding value):

Example 6.2.6.

- 1. For Example 6.2.3 $f(x) = |x|$. One critical number: $x = 0$, One relative minimum at 0, with corresponding value 0.
- 2. For example 6.2.4 $f(x) = x^4 4x^3$. $\int_{0}^{\infty} f(x) dx = 4x^3$ $\int_{0}^{\infty} f(x) dx = 4x^3$ $\int_{0}^{\infty} f(x) dx = 4x^3$ one relative minimum at 3, with corresponding value $\int_{0}^{\infty} f(x) dx = 4x^3$
- critical numbers: $x = 0.3$, one relative minimum at 3, with corresponding value σ $-27.$ $\frac{1}{2}$ enter numbers. $x = 0.9$, one relative numbers in $\frac{1}{2}$, what corresponding value $\frac{1}{2}$

Exercise 6.2.2. Let

$$
f(x) = x^7 - 2x^5 + x^3.
$$

(see Exercise 6.2.1) Find all relative maxima and relative minima of *f*.

Answer:

(point where a relative maximum occurs*,* corresponding value) :

$$
(-1, f(-1)) = (-1, 0); (\sqrt{\frac{3}{7}}, f(\sqrt{\frac{3}{7}}) \approx (0.655, 0.092)
$$

(point where a relative minimum occurs*,* corresponding value) :

$$
\left(-\sqrt{\frac{3}{7}}, f(-\sqrt{\frac{3}{7}})\right) \approx (-0.655, -0.092); (1, f(1)) = (1, 0).
$$

Note that *f* has no relative extremum at 0.

▬

Question II: How to find absolute Max/Min?

Theorem 6.2.4. *Suppose* $f : [a, b] \to \mathbf{R}$ *is a continuous function, then the absolute maximum point and absolute minimum point exist for the graph of f (Theorem 3.2.2 Extreme Value Theorem).*

Remark. Note that the preceding theorem applies only when the domain of *f* is *closed*!

Procedures to find absolute max/min of continuous function *f* **on** [*a, b*]

- 1. Find all the critical numbers c_1, c_2, \ldots , in (a, b) .
- 2. Compute the values $f(a)$, $f(b)$, $f(c_1)$, $f(c_2)$,..., The maximum value corresponds to the absolute max. The minimum value corresponds to the absolute min.

Example 6.2.7. Find the absolute maximum and absolute minimum of $f(x) = x^5 - 80x$ on $[-3, 4]$.

Solution. Since $f(x)$ is continuous on $[-3, 4]$, the absolute max/min can be reached by extreme value theorem.

$$
f'(x) = 5x^4 - 80 = 0 \Rightarrow x = -2, 2.
$$

Compute

$$
f(-2) = 128, \quad f(2) = -128, f(-3) = 3, \quad f(4) = 704.
$$

The absolute minimum is -128 , attained at $x = 2$; the absolute maximum is 704, attained at $x=4$. d at $x = 2$; the abso The absolute minimum is -128, attained at $x = 2$; the $y = 4$. d abs max.

$$
\frac{1}{2} \frac{1
$$

Example: Find the point when abs min

$$
f + \sqrt{}
$$
 afterind.

Finite favore

 \blacksquare

