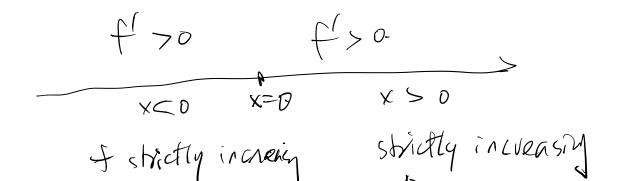
Marz
E.S
$$f(x) = 1|x| = \begin{cases} x & \text{when } x \ge 0 \\ \text{tis continuous,} \\ \text{differentiable except at } x=0 \\ f' = \begin{cases} 1 & \text{when } x > 0 \\ -1 & x < 3 \\ -1$$

f has an absolute maximum at x = 1. the maximal value of fis 1. $f(x) \leq f(i) = 1$ f does not have an abcolute minimum [an absolute min. occurs. at ce(0,1] $f(c) \leq f(x) \quad \forall x_{c}$ such c does not exist i b / c. o is not in the domain of f. f(x) can be arbitrarily close ro o but can never be D. o is the largest possible value. Y s,t. f(x)≥y x x ∈ (a]] but f(x) & D. for any x E(0)]

 $\overline{E.s}, \quad f(x) = x^2 + 1$ f' = 2X = 0 when X = 0Critical pt< of f: x=0

f can have a local extrema at x=0

$$f'_{20}$$
. $f=0$ f'_{70}
 $x = 0$ $x > 0$
 f decreasing f increasing
 f' changes right $t = 0$. Local
 $f' = 3x^2$: $f' = 0$ when $x = 0$
 $f' = 3x^2$: $f' = 0$ when $x = 0$
 $f' = 3x^2$: $f' = 0$ when $x = 0$
 $f' = 3x^2$: $f' = 0$ when $x = 0$
 $f' = 0$ when $x = 0$



f not a local extremum. b(c. f'zo both when x >0 and when x < 0

Chapter 6: Application of Derivatives I

when
$$x < -1$$

then $f' > 0$. f' is strictly 6-8 increasing
 $rn (-\alpha, -1)$

Procedure to determine intervals of increase/decrease of f

- Find all critical for of f1. Find all c such that f'(c) = 0 or f'(c) is undefined. Divide the line into several intervals.
- 2. For each intervals (a, b) obtained in the previous step.
 - (a) If f'(x) > 0, f(x) is a strictly increasing function (\uparrow) on (a, b).
 - (b) If f'(x) < 0, f(x) is a decreasing function (\downarrow) on (a, b).

Example 6.2.2. Find the intervals in which the function

$$f(x) = 2x^3 + 3x^2 - 12x - 7$$

creasing.

is strictly increasing/strictly dec

Solution.

$$f'(x) = 6x^{2} + 6x - 12 = 6(x+2)(x-1) = 0 \implies x = -2, 1.$$

we 3 intervals: $(-\infty, -2), (-2, 1), (1, \infty).$

, 1(2+x-2)

So we hav

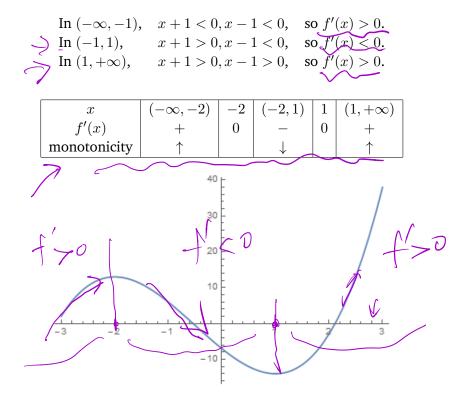
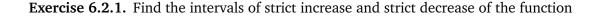
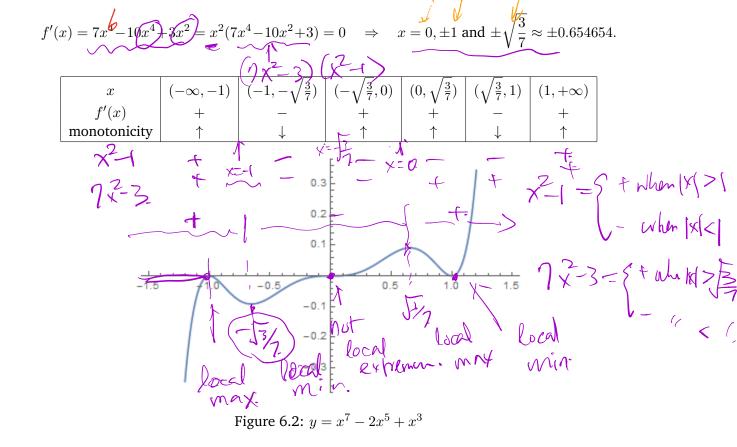


Figure 6.1: $y = 2x^3 + 3x^2 - 12x - 7$

Solution.



 $f(x) = x^7 - 2x^5 + x^3.$



Definition 6.2.2. Let f(x) be a real-valued function defined on (a, b). A number $c \in (a, b)$ is called a critical point of f if f'(c) = 0 or f'(c) does not exist. The corresponding value f(c) is called a critical value for f(x).

Remark. The notion of critical points applies to more general functions, e.g. real functions of several variables, complex functions etc. A critical point always lies in the domain of the function. In the special case of real-valued functions of a single real variable, a critical point is a real number; therefore it is also called a *critical number*. Let f(x) be a real-valued function of a single real variable, and $c \in \mathbb{R}$ be a critical point of f. Let $C \subset \mathbb{R}^2$ be the graph

critical pts of f

of f in the x - y plane. The point $(c, f(c)) \in C$ is a critical point of the function $\pi_y : C \to \mathbb{R}$ given by $(x, y) \mapsto y$. 1 - a color () con o 1

Example 6.2.3. Find the intrudic of A orthogonal decidence

$$f(x) = |x|. = \begin{cases} x & \text{when } x > 0 \end{cases}$$
We have proved
$$f'(x) = \begin{cases} -1, & x < 0, \\ decer not exist & x < 0, \end{cases}$$

$$f'(x) = \begin{cases} -1, & x < 0, \\ decer not exist & x < 0, \end{cases}$$

$$f'(x) = \begin{cases} -1, & x < 0, \\ \text{does not exist,} & x = 0, \\ 1, & x > 0. \end{cases}$$
 Critical pt of f

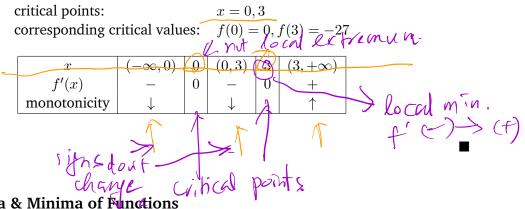
 \Rightarrow critical number: x = 0; corresponding critical value: 0

x	$(-\infty, 0)$	0	$(0, +\infty)$
f'(x)	—	0	+
monotonicity	\rightarrow		\uparrow

Example 6.2.4. $f(x) = x^4 - 4x^3$. Find all critical points and increasing & decreasing intervals. intervals.

Solution.

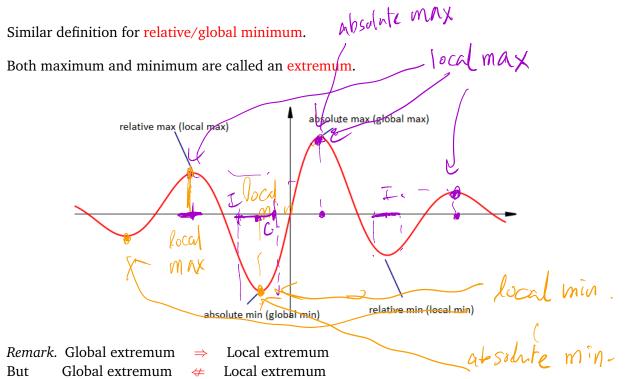
$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3) = 0 \quad \Rightarrow \quad x = 0, 3.$$



Maxima & Minima of Functions 6.2.2

Definition 6.2.3. Let f(x) be a real-valued function with domain *I*. We say

1. f(x) has a relative maximum (or local maximum) at x = c if $f(c) \ge f(x)$ for all $x \in I$ near c. Firs a relative (local) minimum at x=c if. $f(c) \leq f(x)$ $\forall x \in I$. where I is an open interval containing c. 2. f(x) has a global maximum (or absolute maximum) at x = c if $f(c) \ge f(x)$ for all $x \in I$.



Remark. There is some confusion in the literature regarding whether a (local or global) maximum/minimum of a function refers to an element in the domain or its corresponding value (in the range). For most literature, *the* (absolute) maximum of a real function f(x) refers to the value: $M \in \mathbb{R}$ is said to be the (absolute) maximum if there exists an element c in the domain D of f such that $f(x) \leq f(c) \forall x \in D$. To be clear, say that M is an (absolute) maximum value of f; and f attains its (absolute) maximum at c. Say e.g. f has local maxima at $x_1, x_2, \ldots \in D$, with corresponding values $f(x_1), f(x_2), \ldots$. Similarly for the notions of (absolute/local) minimum.

Remark. Absolute maxima/minima may not exist. Consider the e.g. the function $f:(0,1] \rightarrow \mathbb{R}$ given by f(x) = x. This f has an absolute maximum but has no absolute minimum. A general notion is *supremum/infimum*. In the above example, the supremum of f is 1 and its infimum is 0.

Question I: How to find relative extrema?

Theorem 6.2.2 (First Derivative Test: Relative Extrema).

Let f(x) be a continuous function which is differentiable where $x \neq c$. Then

1. f(x) attains a relative maximum at x = c if near the point c,

f'(x) > 0 for x < c; f'(x) < 0 for x > c.

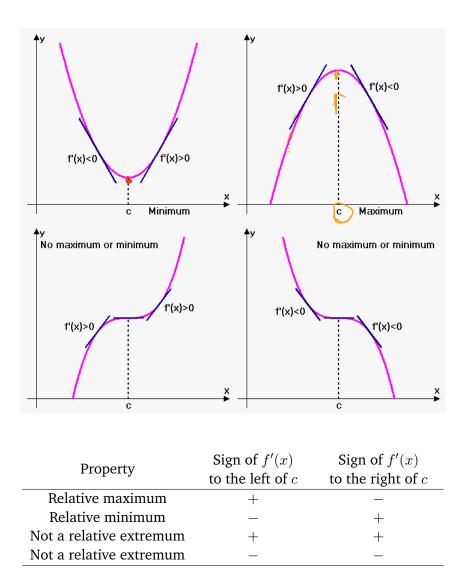
maxat

(mAx Jalhe

2. f(x) attains a relative minimum at x = c if near the point c,

$$f'(x) < 0$$
 for $x < c$; $f'(x) > 0$ for $x > c$.

3. f(x) attains no relative extremum at x = c if near the point c f'(x) has the same sign on two sides of c.



Theorem 6.2.3. Let $c \in (a, b)$ and let f be a continuous function on (a, b) such that f' exists and is continuous on $(a, b) \setminus \{c\}$. Then f attains a relative extremum at $x = c \implies c$ is a critical number, i.e. f'(c) = 0 or f'(c) does not exist.

Remark. f attains a relative extremum at $x = c \quad \notin \quad c$ is a critical number. For example, $f(x) = x^3$, $f'(x) = 3x^2$, so x = 0 is a critical number. But f'(x) > 0 on two sides of x = 0, so f does not have a relative extremum at 0.

Example 6.2.5. Let

$$f(x) = 2x^3 + 3x^2 - 12x - 7.$$

Find all its relative maxima and relative minima.

Solution. Refer to the answer of Example 6.2.2, $f'(x) = 6x^2 + 6x - 12$. The critical numbers are solutions of f'(x) = 0, i.e x = -2 and x = 1.

x	$(-\infty, -2)$	-2	(-2,1)	1	$(1, +\infty)$
f'(x)	+	0	—	0	+

(point where a relative maximum occurs, corresponding value): (-2, f(-2)) = (-2, 13)(point where a relative minimum occurs, corresponding value): (1, f(1)) = (1, 14)

Example 6.2.6.

- 1. For Example 6.2.3 f(x) = |x|. One critical number: x = 0, One relative minimum at 0, with corresponding value 0.
- 2. For example 6.2.4 $f(x) = x^4 4x^3$. $f' = 4x^3 12x^2 = 4x^2(x-3) = 0$ when critical numbers: x = 0.3, one relative minimum at 3, with corresponding value $\frac{1}{6}$
- 7 -27.

Exercise 6.2.2. Let

$$f(x) = x^7 - 2x^5 + x^3.$$

(see Exercise 6.2.1) Find all relative maxima and relative minima of f.

Answer:

(point where a relative maximum occurs, corresponding value) :

$$(-1, f(-1)) = (-1, 0); (\sqrt{\frac{3}{7}}, f(\sqrt{\frac{3}{7}}) \approx (0.655, 0.092)$$

(point where a relative minimum occurs, corresponding value) :

$$\left(-\sqrt{\frac{3}{7}}, f(-\sqrt{\frac{3}{7}})\right) \approx (-0.655, -0.092); (1, f(1)) = (1, 0).$$

Note that f has no relative extremum at 0.

Question II: How to find absolute Max/Min?

Theorem 6.2.4. Suppose $f : [a, b] \to \mathbb{R}$ is a continuous function, then the absolute maximum point and absolute minimum point exist for the graph of f (Theorem 3.2.2 Extreme Value Theorem).

Remark. Note that the preceding theorem applies only when the domain of *f* is *closed*!

Procedures to find absolute max/min of continuous function *f* **on** [*a*, *b*]

- 1. Find all the critical numbers c_1, c_2, \ldots , in (a, b).
- 2. Compute the values f(a), f(b), $f(c_1)$, $f(c_2)$, ..., The maximum value corresponds to the absolute max. The minimum value corresponds to the absolute min.

Example 6.2.7. Find the absolute maximum and absolute minimum of $f(x) = x^5 - 80x$ on [-3, 4].

Solution. Since f(x) is continuous on [-3, 4], the absolute max/min can be reached by extreme value theorem.

$$f'(x) = 5x^4 - 80 = 0 \quad \Rightarrow \quad x = -2, 2.$$

Compute

$$f(-2) = 128, \quad f(2) = -128,$$

$$f(-3) = -3, \quad f(4) = 704,$$

The absolute minimum is -128, attained at x = 2; the absolute maximum is 704, attained at x = 4.

fonite toucal

